
From Large Language Models to Adversarial Malware: How far
are we

Shuai He
optimus_he@hust.edu.cn
Huazhong Science and
technology University
Wuhan, Hubei, China

Hao Yan
u202112208@hust.edu.cn
Huazhong Science and
technology University
Wuhan, Hubei, China

Wenke Li
winkli1@hust.edu.cn
Huazhong Science and
technology University
Wuhan, Hubei, China

Sheng Hong
hongsheng@hust.edu.cn
Huazhong Science and
technology University
Wuhan, Hubei, China

Xiaowei Guo
d202280650@hust.edu.cn
Huazhong Science and
technology University
Wuhan, Hubei, China

Xiaofan Liu
xiaofanliu@hust.edu.cn
Huazhong Science and
technology University
Wuhan, Hubei, China

Cai Fu∗
fucai@hust.edu.cn

Huazhong Science and
technology University
Wuhan, Hubei, China

Abstract
Large Language Models (LLMs) have achieved notable progress in
fields including natural language processing, cyber threat detection,
and automated penetration testing, increasingly being applied in
practical settings. However, the rapid advancement of these models
has also led to their potential misuse, posing new challenges to cy-
berspace security. Security incidents have already been reported in
areas such as phishing attacks and disinformation campaigns. Nev-
ertheless, the progress and potential impact of LLMs in generating
adversarial malware remain underexplored. This study systemat-
ically investigates the evasion capability of adversarial malware
generated by LLMs. By integrating chain of thought into a Markov
process and designing prompt based state transition functions and
reward mechanisms, this research evaluates the effectiveness and
efficiency against mainstream static detection methods on a dataset
comprising over 2,000 real-world malware samples. Experimen-
tal results demonstrate an average evasion rate of 89.92% across
12 commercial antivirus engines on VirusTotal. The findings re-
veal that individuals with minimal technical expertise and basic
natural language skills can generate malware that evades static
detection, which underscores potential vulnerabilities in current
cyberspace defense and detection systems regarding adversarial
malware countermeasures.

CCS Concepts
• Security and privacy → Malware and its mitigation.
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1 Introduction
Anti-malware is the front-line of cyberspace security, where mu-
tated malware detection has always been a long-term challenge for
anti-virus software. According to SonicWall Cyber Threat Report 1,
malware attacked worldwide users over 2.8 billion times during the
first half of 2022, of which 36.5% are mutated malware. Regardless
of the specific tactics employed in malicious campaigns, they typi-
cally rely on malware to infiltrate systems and achieve objectives
such as data exfiltration or system disruption.

As the number of malicious software increased in the last years
to hundreds of thousands of new malware samples daily [1], se-
curity technologies can no longer rely solely on virus signatures,
instead, they have increasingly adopted heuristics and machine
learning techniques for over a decade [2]. However, relying ex-
clusively on machine learning poses significant risks, as machine
learning models are inherently vulnerable to adversarial attacks,
where indistinguishable perturbations can lead to incorrect predic-
tions [3]. Recent research has demonstrated the vulnerability of
neural network-based malware detectors to both white-box [4] and
black-box adversarial attacks [5]. The challenge of generating adver-
sarial malware lies in balancing efficiency, stealth, and adaptability.
Existing adversarial attack methods often rely on gradient-based or
genetic optimization techniques [6], which require a large number
of queries to generate effective adversarial samples. This ineffi-
ciency conflicts with the rapid growth and scalable nature of real -
world malware scenarios. Additionally, while adversarial training
has been proposed as an effective defense mechanism, it suffers
from limitations in generalization. As highlighted by Keane et al.
[7], retraining amodel on a single adversarial attack does not ensure
robustness against other attack variants. Therefore, novel adver-
sarial attacks need to be proposed to facilitate the data generation
1https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-
threat-report.pdf
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for adversarial training. Another emerging challenge lies in the
rapid development of LLMs, whose potential impact on adversarial
malware remains underexplored. As these models grow in com-
plexity and capability, they could introduce new vulnerabilities or
opportunities for adversarial manipulation, yet their implications
for cybersecurity have not been thoroughly investigated.

To mitigate the above challenges, this paper proposes a novel
method for generating adversarial samples against static malware
detection leveraging LLMs. By modeling the problem of generat-
ing adversarial samples for static malware detection as a Markov
process and utilizing LLMs to guide its optimization, our approach
efficiently generates adversarial samples in black-box scenarios
without any model training. To ensure the functional integrity of
the original files, we introduce 7 independent manipulations based
on the characteristics of the PE file structure. By combining these
manipulations and setting the optimization objective to the shortest
evasion sequence, our method achieves an evasion rate of 98.62%
against the MalConv detector, requiring only 8,808 queries and a
relative file size increase of 0.46. Futhermore, we conduct evaluation
on real-world integrated malware detector VirusTotal, the adver-
sarial malware samples can evade 12 vendors with 89.92% average
attack success rate, demonstrating potential threats to anti-virus
vendors. The core contributions of this paper are as follows:

• This paper introduces an end-to-end adversarial attack frame-
work leveraging LLMs to simulate a Markov process, which
facilitates the efficient generation of adversarial malware
samples while maintaining their original functionality. By
removing the dependency on model training, which is a
necessary step in existing methods, our approach presents
a more efficient adversarial sample generation framework,
offering an alternative to traditional paradigms.

• Our approach demonstrates competitive evasion rates against
static malware detector with significantly fewer queries and
smaller file size compared to existing methods.

• The findings highlight the potential risks posed by LLM-
assisted adversarial malware generation in real-world mal-
ware detection systems, underscoring the need for robust
defensive mechanisms.

2 Related Work
Previous approaches design attacks from the perspective of adver-
sarial attacks [8], which can be divided into two categories:

White-box attack. Those attacks require prior knowledge of the
target model such as model gradient and model architecture. [9]
proposes three distinct attacks: Full DOS, Extend, and Shift. The
Full DOS attack manipulates 58 bytes in the DOS header and the
entire DOS stub. The Extend attack enlarges the DOS header and
injects adversarial content, while the Shift attack injects content
before the first section. Meanwhile, [10] focuses on manipulating
the names of each section in the Optional Header. Additionally, [11]
manipulates 58 bytes in the DOS header (fromMZ to the offset to the
PE header), guided by the integrated gradients method. In a different
approach, [12] enhanced padding manipulations by padding in both
the section unused space and overlay, replacing the optimizer with
an iterative variant of the fast gradient signmethod (FGSM) [3]. This
method was originally proposed for image adversarial attacks and

Figure 1: Schematic diagram of LLMs-based adversarial mal-
ware generation.

has been adapted for malware manipulation. Finally, [13] conducted
an experiment on MalConv, which pads embedding values at the
overlay of the PE file guided by the positive direction of the gradient.
This approach achieved a 60% attack success rate with an average
of 10,000 bytes modified per sample.

Black-box attack. In this scenario, attacks can only acquire input
and output of the target model, thus generative methods are often
used. [5] proposes a generative adversarial network that utilizes
the the feature extracted from API calls to generate adversarial
malware. However this work did not provide a method to convert
the adversarial feature vectors back to real-world binaries. [14] min-
imizes the malware score using the same manipulations as those in
[10]. But [14] employs a genetic algorithm to optimize the chain
of manipulations and utilizes a sandbox to discard malware whose
functionality is broken. Similarly, Song et al. [15] also use a packer
and a set of manipulations, but they rely on a multi-armed ban-
dit (MAB) as the optimizer. Their experiments require 20 servers
to conduct the manipulations. In a different approach, [16] pro-
pose two individual attacks. One attack conducts manipulations
through a set of operations in the section and a packer. The other
attack combines Full DOS, Extend and Shift, with the manipulation
optimization relying on a genetic algorithm.

Our objective is to explore the capability of LLMs in generating
adversarial malware, aiming at the advancing sequential optimiza-
tion capability of LLMs. Initially, we model the evasion to a Markov
decision process (MDP). Subsequently, we integrate the binary file
manipulations to a condensed manipulation set, demonstrating its
effectiveness in generating adversarial malware samples.

3 METHODOLOGY
Overview. We focus on generating adversarial malware efficiently.
Since the defense models develop rapidly, training target-exclusive
adversarial malware generator can be demanding on computational
resource. Hence, to mitigate the challenge, in this work, we inves-
tigate the capabilities of LLMs in generating adversarial malware,
which is composed of two parts: (i) file space manipulations, which
determine which part of malware bytes will be modified. (ii) Prompt
based state transition, which utilizes Markov-based context to pre-
dict the next manipulation. The workflow the proposed method is
shown in Fig. 1.
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3.1 File Space Manipulation
To embed malicious behaviors within different manipulations. Ac-
cording to the characteristic PE file, 7 independent manipulations
are introduced: (i) Apply random values to 58 modifiable bytes
within the DOS Header. (ii) Extending the DOS-stub with randomly
generated bytes. (iii) Inject random bytes into unused space at the
end of each section. (vi) Create a section after the last section and
inject bytes that are extracted from benign binary’s section. (v)
Create a section after the last section and inject random bytes. (vi)
Padding bytes that are extracted from benign binaries to the overlay.
(vii) Padding random bytes to the file overlay.

Evasion Rate Queries Consumed Time Consumed

0.4

0.6

0.8

1.0

1.2
LLM Models

gemini-pro
ERNIE-Bot
gpt-3.5-turbo-0125
llama-2-70b-chat-gguf
Qwen1.5-32b-chat

Figure 2: Comparison of different LLMs on evasion perfor-
mance.

3.2 Prompt based state transition
To balance output precision and informational completeness, we
design a four-tiered state transition strategy in the prompt:

Base Task Layer. The foundational task is defined as follows:
"Your task is processing a binary file by selecting the most suitable
action from the provided list. Each action will be associated with a
reward, determined by its impact of the file and execution sequence.
Furthermore, the selection of an action should consider the history
of prior actions and their respective rewards." Then we explain the
specific meaning of each action, as detailed in Section 3.1.

Constraint Layer. Preliminary experiments indicate that uncon-
strained settings often lead to redundant outputs. We observed that
the "output-only-action-index" instruction significantly enhances
the validity of the generated results. To mitigate ambiguous outputs
while ensuring the model delivers concise and meaningful informa-
tion, we designed the prompt as follows: "Only output the name of
the selected action." Additionally, we incorporated the instruction
"Do not give any extra information or reasons," based on insights
from our preliminary analysis.

Information Fusion Layer. Contains a two-dimensional fea-
ture integration. The first one is structured metadata, which is
extracted from PE headers (COFF/Machine Characteristics), op-
tional headers (Subsystem/DLL flags), and section attributes. The
other is dynamic context, which contains a sliding window (size=2)
of historical file features, actions and rewards, the reward corre-
sponds to the difference between the initial malicious score and the
score observed during the mutation process.

Contrastive Context Layer. This component extracts triplets
composed of file features, actions, and rewards from historical
evasion samples, which are used to simulate few-shot learning
scenarios and enhance the effectiveness of large language models in
predicting actions. These evasion samples are generated by an LLM
through a prompt scheme without a contrastive context layer. To
minimize token consumption during LLM interactions, this section
adopts a modular prompt design, where action and reward lists
are directly updated in each interaction, rather than relying on the
LLM’s memory function to gradually expand these lists.

To mitigate the impact of LLM hallucinations on the decision
making process, we set the max_tokens parameter to 1. This config-
uration compels LLMs to solely predict the next action. Full details
are publicly accessible in our open-source repository2.

4 EXPERIMENTS
4.1 Experimental Setup
Dataset.We collected experimental data from a real-world malware
dataset VirusShare3. Specifically, we extracted over 10,000 malware
samples from the VirusShare_001 collection.We employedMalConv
[13] to screen and retain only those samples identified as malicious.
Subsequently, we randomly selected 2,036 malware samples as the
experimental dataset as outlined in [17].

Experimental environment. Our implementation using Py-
Torch 1.8.2 and the stable-baselines3 library. The PEfile library was
used to modify the bytes of PE files, with the corresponding Python
version being 3.6.2. Additionally, we utilized the ToucanStrike li-
brary to reproduce related adversarial attacks. Experiments were
conducted on a Windows server equipped with a 2.9 GHz Intel
Xeon Gold 6326R CPU, 2 × 80GB NVIDIA A100 Tensor Core GPU
GPUs, and 256GB of memory.
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Figure 3: Comparison of different LLMs on evasion rate.

Evaluation metrics. We employed four widely-used metrics:
Evasion rate (ER), number of queries, evasion cost, and time con-
sumption. Evasion rate refers to the efficiency of the method in
2https://github.com/Optimus-He/From-Large-Language-Models-to-Adversarial-
Malware-How-far-are-we
3https://virusshare.com
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generating adversarial malware, which is calculated by the propor-
tion of malware in the dataset that evades detection. The number
of queries indicates how many times the target model is queried
during the generation of adversarial malware. This is a crucial met-
ric in practice, as excessive queries may be blocked by real-world
antivirus software. The evasion cost 𝛼 is the average increase in
size of the modified malware relative to the original size, showing
how many bytes are injected during the generation process.

4.2 Internal Parameter Analysis
To systematically evaluate the impact of adversarial perturbation
parameters on evasion effectiveness, we first conduct parameter
sensitivity analysis. As shown in Table 1 and 2, we focus on two crit-
ical hyperparameters: the evasion cost 𝛼 and maximum query bud-
get. We randomly selected 200 malware samples from the dataset,
repeated each experiment three times, and report the mean results.
Table 1: Performance of the proposed method under varying
query limit.

Maximum-query ER(%) Queries Time
1 43.50 457 52mins20s
2 76.62 642 67min39s
3 94.03 663 58mins1s
4 94.53 635 66mins41s
5 97.01 493 62mins33s
10 99.00 682 70mins25s
15 99.00 714 76mins50s

To explore the impact of different 𝛼 values on the experimen-
tal results, we gradually increased 𝛼 from 0.1 and monitored the
evasion rate. The findings indicate that our method achieves the
optimal evasion rate when 𝛼 reaches 2, after which the evasion rate
stabilizes. Consequently, we set 𝛼 to 2 for subsequent experiments.
Similarly, in the maximum query experiment, we observed that the
evasion rate peaks when the maximum query count reaches 10.

To investigate the impact of LLMs on evasion performance, we
conduct cross-model comparative experiments. As illustrated in
Fig. 2, using the top-performing Qwen-1.5-32B as the benchmark,
we normalize three core evaluation metrics (evasion rate, query
consumed and time consumed) into relative performance. Result
reveals Qwen achieves highest evasion rate while maintaining less
query and time consumed, which justifies our selection of Qwen as
the foundational generator for subsequent experiments.

Table 2: Performance of the proposed method under varying
evasion cost 𝛼 .

Maximum-𝛼 ER(%) Queries Time
0.1 79.00 540 61mins16s
0.5 85.00 576 58min27s
0.8 93.00 638 63mins10s
1.0 93.00 616 60mins48s
1.5 95.00 632 67mins25s
2.0 96.50 655 69mins33s
2.5 96.50 673 72mins33s

Table 3: Comparisons with related methods against MalConv
malware detectors.

Methods ER(%) Queries Evasion Cost Functionality
This work 98.62 8808 0.46 100%
Full DOS 41.29 38737 0.15 98.50%

Partial DOS 50.26 41907 0.12 27.07%
Extend 88.00 34666 3.81 72.00%
Shift 99.22 30789 3.78 97.00%

Padding 83.24 30251 3.73 100%
Header Fields 48.58 38984 0.27 100%

GAMMA Section 94.15 32295 0.50 95.00%
GAMMA Padding 88.85 28489 0.33 99.00%

MAB 82.00 22203 3.56 92.00%
Aimed 56.40 73624 0.76 100%

4.3 Effectiveness Analysis
To comprehensively evaluate the method efficacy, we conduct com-
parative experiments with 10 state-of-the-art adversarial attacks
using 2,036 malware samples. All methods are reproduced through
the benchmark from [18]. As shown in Table 3, our method, with a
98.62% evasion rate, ranks second. However, the Shift method can
not preserve the functionality of input samples (verified via sand-
box executability checks). Although Shift evades 14 more samples,
it requires 21,981 more queries, which is critical in practice, as too
many queries may be blocked by real-world antivirus software.

To assess the real-world threat potency of our method against
commercial antivirus systems, we conduct a validation experiment
on VirusTotal. 500 adversarial samples that successfully evadedMal-
Conv detector are randomly selected and submitted to VirusTotal
for large-scale scanning. Based on vendors’ technical whitepapers,
we identify 12 antivirus products explicitly employing ML-based
static analysis (excluding solutions relying on dynamic behavior
detection), which are anonymized as AV1-AV12. Fig. 3 presents the
detection results of the 12 antivirus vendors. Against AV1, misclas-
sified all adversarial samples as benign (100% evasion rate), the
vendor while the best-performing AV12 still showed 80.36% false
negative rate after excluding 11 timeout cases. Cross-vendor anal-
ysis reveals an average evasion rate of 89.92%. The findings not
only validate the practical effectiveness of our method, but also
expose systemic vulnerabilities in commercial detection systems
when facing LLM-powered adversarial attacks.

5 Conclusion and Future Work
We investigate the capabilities of LLMs in generating adversarial
malware samples. Through introducing 7 functionality-preserving
manipulates and modeling the evasion optimization as a Markov
process, we show this method achieves a 98.62% evasion rate against
MalConv and evades 12 real-world antivirus engines on VirusTotal
with 89.92% evasion rate. However, in the current implementation
it does not work equally well on different malware detectors.

5.1 Future Work
A promising research direction is constructing robust detection
methods for adversarial samples. An approach we are exploring
involves applying ensemble learning methods. This framework
aims to enhance detection accuracy by integrating classification
insights across malware and adversarial sample categories, thereby
improving the system’s robustness against sophisticated attacks.
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