
A Large-Scale Empirical Study on Semantic
Versioning in Golang Ecosystem

Wenke Li†‡, Feng Wu§, Cai Fu∗†‡, Fan Zhou§
† School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

‡ Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research Center on Big Data Security
§ Platform and Content Group, Tencent Technology (Shenzhen) Co.Ltd, Shenzhen, China

winkli1@hust.edu.cn, barryfwu@tencent.com, fucai@hust.edu.cn, fanzhou@tencent.com

Abstract—Third-party libraries (TPLs) have become an es-
sential component of software, accelerating development and
reducing maintenance costs. However, breaking changes often
occur during the upgrades of TPLs and prevent client programs
from moving forward. Semantic versioning (SemVer) has been
applied to standardize the versions of releases according to
compatibility, but not all releases follow SemVer compliance. Lots
of work focuses on SemVer compliance in ecosystems such as Java
and JavaScript beyond Golang (Go for short). Due to the lack of
tools to detect breaking changes and dataset for Go, developers
of TPLs do not know if breaking changes occur and affect client
programs, and developers of client programs may hesitate to
upgrade dependencies in terms of breaking changes.

To bridge this gap, we conduct the first large-scale empirical
study in the Go ecosystem to study SemVer compliance in terms
of breaking changes and their impact. In detail, we propose
GoSVI (Go Semantic Versioning Insight) to detect breaking
changes and analyze their impact by resolving identifiers in client
programs and comparing their types with breaking changes.
Moreover, we collect the first large-scale Go dataset with a
dependency graph from GitHub, including 124K TPLs and 532K
client programs. Based on the dataset, our results show that
86.3% of library upgrades follow SemVer compliance and 28.6%
of no-major upgrades introduce breaking changes. Furthermore,
the tendency to comply with SemVer has improved over time
from 63.7% in 2018/09 to 92.2% in 2023/03. Finally, we find
33.3% of downstream client programs may be affected by
breaking changes. These findings provide developers and users
of TPLs with valuable insights to help make decisions related to
SemVer.

Index Terms—Semantic Versioning, Breaking Change, Third-
Party Library, Mining Software Repositories, Go Ecosystem

I. INTRODUCTION

Third-party libraries (TPLs) nowadays play an important

role in modern software systems, avoiding reinventing the

wheel and accelerating the development [1]–[3]. Most TPLs

provide application programming interfaces (APIs) with down-

stream client programs to share their new features, fix bugs and

refactor code [4], [5].

However, frequent updates of TPLs may introduce breaking

changes and result in compilation errors or runtime errors in

client programs, which impose extra costs on client programs

to adapt to breaking changes [6], [7]. In order to communicate

with client programs regarding API compatibility, Semantic

Version (SemVer) [8] is used by TPLs to signal the state of

∗ Corresponding author

changes to APIs. SemVer constrains the version number to

follow the form of major.minor.patch.pre-release.build. The

updates of major and pre-release/build may have incompatible

changes (breaking changes), while the updates of minor and

patch compatible changes (no breaking changes).
Unfortunately, not all releases of version numbers are com-

pliant with SemVer. Ochoa et cl. [5] found that in the Maven

central, 83.4% of library upgrades do comply with SemVer,

20.1% of non-major upgrades introduce breaking changes,

and only 7.9% of breaking changes affect client programs.

Decan et al. [9] proposed an evaluation based on the “wisdom

of crowds” principle to infer SemVer compliance, and their

results showed that packages in Cargo, Npm, and Packagist

are more compliant with SemVer than packages in Rubygems.

Lots of work studies SemVer in Java, Javascript, PHP, Ruby,

and Rust ecosystems, but there is a gap that we do not

know the situation of SemVer in the Golang (Go for short)

ecosystem.
The Go programming language is becoming increasingly

popular among developers as the number of Go repositories

starred on GitHub has increased from rank 8 in Q1/2014 to

rank 3 in Q1/2023 [10], indicating that more Go TPLs are

available. However, not all TPLs adhere to SemVer to meet

backward compatibility, for example, the users of popular web

framework gin found that there were breaking changes in a

minor upgrade [11]. Despite these breaking changes were

tagged in the release notes, they still led to confusion for

developers of downstream client programs [12]. As a result,

it is significant to investigate SemVer compliance in the Go

ecosystem.
To bridge this gap, in this paper, we perform the first large-

scale empirical study to explore SemVer compliance in the Go

ecosystem, there are two main challenges.

• There is no reliable tool to identify breaking changes and

analyze their impact on client programs for Go.

• There is no large-scale dataset for Go, which can identify

TPLs and corresponding client programs.

To address the first challenge, we implement a new tool,

GoSVI (Go Semantic Versioning Insight), to detect module-

based breaking changes and compare usages of client pro-

grams with breaking changes based on source code. In de-

tail, first, we extract exported objects from all packages of

TPLs, such as interface, function, and struct. Second, we

1604

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00140

report breaking changes according to 39 conditions based on

the Go apidiff tool [13]. Finally, we resolve identifiers of

client programs to extract their types and compare them with

breaking changes to calculate the usage rate. To address the

second challenge, first, we crawl all Go repositories on GitHub

with stars greater than five and remove invalid, duplicate,

and outdated repositories. Second, The dependency graph is

extracted among the repositories by parsing the go.mod file,

which is stored in the graph database neo4j [14]. Finally, we

identify TPLs and client programs based on their relationships,

where entry nodes are treated as client programs and exit nodes

are treated as TPLs.

In our work, we set up three questions to explore SemVer

compliance in the Go ecosystem.

• RQ1: How are semantic versioning compliance applied

in the Go ecosystem in terms of breaking changes?

• RQ2: How much adherence to semantic versioning com-

pliance has increased over time?

• RQ3: What about the impact of breaking changes on

client programs?

In our study, we collect 124K TPLs and 532K client

programs according to the dependency graph of our dataset.

Our results find that (1) 86.3% of libraries upgrades follow

SemVer compliance, 28.6% of non-major upgrades (minor and

patch upgrades) introduce breaking changes, where remove
in function type is the most common breaking change con-

dition at 36.2%. (2) the tendency to comply with SemVer

has improved over time from 63.7% in 2018/09 to 92.2%

in 2023/03. (3) only 3.1% of breaking changes affect client

programs, while 33.3% of client programs may be affected

by breaking changes. Furthermore, we give some suggestions

for developers of TPLs and client programs regarding finding

breaking changes, maintaining the project layout, and when to

upgrade dependencies. Our dataset and tool are accessible on

the website 1.

The main contributions of our study are as follows.

• We conducted the first large-scale empirical study to

analyze SemVer compliance in the Go ecosystem and the

impact of breaking changes on client programs.

• we implemented a new tool, GoSVI, to detect breaking

changes and analyze their impact on client programs.

• We proposed a large-scale dataset with a dependency

graph in the Go ecosystem, in which TPLs and corre-

sponding client programs are identified for further re-

search.

• We offer some suggestions for Go developers of TPLs

and client programs from our study of compatibility

analysis.

II. BACKGROUND

A. Semantic Version

According to Semantic Version [8], a version number (x.y.z-

pre-release+build) consists of three required parts (Major,

1https://github.com/liwenke1/GoSVI

Minor, Patch version) and two optional parts (Pre-release and

Build Metadata label). Each version change should respect the

following rules:

• Major version (x) increases when you make incompatible

API changes, for example, the version number changes

from 1.0.0 to 2.0.0.

• Minor version (y) increases when you add functionality in

a backwards compatible manner, for example, the version

number changes from 1.0.0 to 1.1.0.

• Patch version (z) increases when you make backwards

compatible bug fixes, for example, the version number

changes from 1.0.0 to 1.0.1.

• Pre-release label (pre-release) indicates that the version

is a pre-release and may not guarantee compatibility

requirements compared to the associated normal version,

for example, version 1.0.1-alpha may not be compatible

with version 1.0.1.

• Build metadata label (build) indicates that the version

only has different build metadata compared to the as-

sociated normal version, for example, version 1.0.1+001

may change build metadata compared to version 1.0.1.

Moreover, If the major version is 0, we treat it as the initial

development stage which can introduce breaking changes.

B. Go Package Management and Module System

Package managers are used as tools to create the environ-

ment to download, update, and remove project dependencies,

allowing developers to build projects more conveniently, such

as Maven, Gradle in Java, Npm in JavaScript, and Pip in

Python, the Go team also introduced Go modules to manage

dependencies [15].

In the module system, a module consists of multiple pack-

ages and is used as a unit for managing dependencies [16].

Each Go module has a go.mod file and a go.sum file.

• The go.mod file describes the module’s properties, in-

cluding module path, its dependencies on other modules,

and the Go version.

• The go.sum file lists down the checksum of direct and

indirect dependency required along with the version,

which is used to confirm that none of them has been

modified.

In the package management system, the main process con-

sists of a decentralized package distribution system, a package

search engine, a version naming convention, and Go command

tools [17].

• The decentralised package distribution system allows

developers to publish modules in their repositories and

download other modules.

• Package search engine [18] provides developers with

the ability to locate and discover useful modules and

packages.

• Version naming convention helps developers to select the

right version in terms of compatibility, it serves the same

purpose as SemVer.

1605

Collect DatasetCollect Dataset

Go Package

Search Engine

Identify Breaking Changes
Libray Upgrade

(v1,v2)
Packages

Packages

v1

v2

Breaking Changes

Compare

Identify Breaking Changes
Libray Upgrade

(v1,v2)
Packages

Packages

v1

v2

Breaking Changes

Compare

Identify Breaking Changes
Libray Upgrade

(v1,v2)
Packages

Packages

v1

v2

Breaking Changes

Compare

Analysis of Breaking Changes ImpactAnalysis of Breaking Changes Impact

ResultThe Types of Identifier Nodes

Type: github.com/go-git/go-git/v5.plumbing

Type: github.com/go-git/go-git/v5.TagMode

Type: github.com/go-redis/redis/v8.Options

Type: github.com/go-git/go-git/v5.plumbing

Type: github.com/go-git/go-git/v5.TagMode

Type: github.com/go-redis/redis/v8.Options

ASTAST

Compare

Analysis of Breaking Changes Impact

ResultThe Types of Identifier Nodes

Type: github.com/go-git/go-git/v5.plumbing

Type: github.com/go-git/go-git/v5.TagMode

Type: github.com/go-redis/redis/v8.Options

AST

Compare
Parse

Extract

1

2

3

4 1

2

3

4

Dependency Graph

go.mod go.mod

RepositoryRepository

go.mod

Repository

go.mod go.mod

RepositoryRepository

go.mod

Repository

go.mod

Repository

go.mod

Repository

Parse

Extract

1

2

3

4

Dependency Graph

go.mod

Repository

go.mod

Repository

Third-party Libraries

1 2 31 2 31 2 3

Third-party Libraries

1 2 3

Client Programs

2 3 42 3 42 3 4

Client Programs

2 3 4

Collect Dataset

Go Package

Search Engine

Identify Breaking Changes
Libray Upgrade

(v1,v2)
Packages

Packages

v1

v2

Breaking Changes

Compare

Analysis of Breaking Changes Impact

ResultThe Types of Identifier Nodes

Type: github.com/go-git/go-git/v5.plumbing

Type: github.com/go-git/go-git/v5.TagMode

Type: github.com/go-redis/redis/v8.Options

AST

Compare
Parse

Extract

1

2

3

4

Dependency Graph

go.mod

Repository

go.mod

Repository

Third-party Libraries

1 2 3

Client Programs

2 3 4

Fig. 1. Overview of the GoSVI tool

• Go command tools support an interface to manage de-

pendencies, making it easy for developers to add, update,

and remove dependencies.

In this paper, we use modules as the unit for detecting

breaking changes because modules, which as the unit of

the package distribution system, can be imported by client

programs. Moreover, we extract the dependency graph by

parsing the go.mod file of each Go module.

III. STUDY DESIGN

In this section, we describe how we collect the dataset

and the implementation of GoSVI to detect breaking changes

between two valid versions and analyze the impact on client

programs, as shown in Figure 1.

A. Data Collection

The purpose of data collection is to get a large number of

go modules and the dependency graph among them, which

can be used to identify TPLs and client programs. In the

package search engine [18], we can locate useful modules with

their dependency graph, but there are two limitations:(1) it is

difficult to get all modules in the engine; (2) there are many

duplicate and deprecated modules in their dependency graph.

Therefore, to ensure the confidence and quality of the dataset,

we collect the Go repositories from GitHub and extract the

dependency graph among them.

Crawl Dataset. We use official Search API [19] published

by GitHub to crawl Go repositories. Regarding the limitations

on the length of query response, we design two query strategies

based on Star to collect all the repositories. For repositories

with more than 100 stars, keyword Star is used to order

the query response during pagination. Otherwise, repositories

whose Star are the same and smaller than 100, will trigger the

query response limitations (1,000), resulting in missing some

search results, we add another keyword CreateTime to order

the query response during pagination to solve the problem.

Finally, we only reserve repositories with stars greater than

five.

Clean Dataset. The repositories, which have many defects,

will affect the detection results, so we summarized three

situations in which the repositories should be removed from

our dataset.

• Invalid repositories. Repositories that are empty or have

build errors or their version number is smaller than two,

can not support detecting breaking changes. We check the

extension of every file in each repository, if all files do

not equal ”*.go”, it is considered as an empty repository;

we use command ”go build” in the default branch of the

repository to check whether it has build error; we use ”git
tag -l” to calculate the number of versions and remove

the repositories whose versions number is smaller than

two.

• Duplicate or similar repositories. Duplicate repositories

are treated as copies of other repositories, as a result,

we remove those fork or mirror repositories by searching

through GitHub API. Similar repositories, defined as

having cloned, migrated, or deprecated repositories, will

have the same module path and version number list, so

we keep the latest repositories based on the update time.

• Repositories with Go version before 1.11. We remove

these repositories because Go 1.11 adds preliminary sup-

port for a new concept called ”modules”, an alternative

to GOPATH with integrated support for versioning and

package distribution, and support locating and loading

packages of Go source code, what’s more, the dependence

is defined and managed with go.mod file. We remove the

repositories that do not contain go.mod and have errors

during loading and resolving packages.

Extract Dependency Graph. The purpose of extracting the

dependency graph is to identify TPLs and their corresponding

client programs in the dataset. To this end, we parse the

go.mod file of each repository, analyze the module field and

the require field, and obtain the module path and dependency

information on other modules, including the module paths,

version numbers, and relationship. We filter out all modules

that are not directly imported since no package from these

modules is called directly. Note that multiple modules may

exist in a repository, so each module will be parsed separately

and stored separately. Finally, the dependency graph is stored

in the graph database neo4j [14], where different versions

of each module are treated as nodes and the dependency

relationships are treated as edges. In the dependency graph,

nodes will be identified as TPLs only if they are dependent

1606

1 Module: github.com/pinpoint-apm/pinpoint-go-agent
2 Library Upgrade: v1.1.3 -> v1.2.0, Minor Upgrade
3 Package: github.com/pinpoint-apm/pinpoint-go-agent/

protobuf
4 Change Node: NewAgentClient
5 Change Category: Function
6 Change Condition: Param Change
7 Change Message: func(google.golang.org/grpc.

ClientConnInterface) AgentClient -> func(*google
.golang.org/grpc.ClientConn) AgentClient

Fig. 2. The Output of Identifying Breaking Changes

on other modules, and their downstream nodes are treated as

client programs.

B. Breaking Change Detection

In our work, we utilize and enhance the Go apidiff tool

[13], proposed by Go maintainers, to detect breaking changes

between versions of TPLs. In this section, we introduce the

methodology of detecting breaking changes and the catalogue

of breaking changes.

The Go apidiff tool is designed to display the differences

in exported objects between any two packages, including

compatibility and incompatibility changes (breaking changes).

We use it to detect breaking changes, however, there are

two limitations:(1) the brief report messages make it difficult

to classify the results for further research; (2) it cannot

detect breaking changes between modules. To address the first

limitation, we optimized the tool to report the location and type

of breaking changes, as shown in Figure 2, including module,

package, type, condition, and detailed message of change

nodes. To address the second limitation, we parse all packages

of the modules, detect breaking changes between packages

with the same path, and finally merge all results. Moreover,

the detection process is built completely automatically on

repositories hosted on git workflows.

Table I presents the catalogue of breaking changes. There

are 13 categories of breaking changes, consisting of Package
change, 11 data types changes in Go syntax, and Data Type
Change, which is defined as the change between the above

11 data types. It should be noted that for basic date type,

we set basic (Const) because of its extra breaking change

condition of value change. A data type may be declared in

multiple scenarios, for example, Map can be declared by using

the keywords var or type. Furthermore, we summarize 39

conditions of breaking changes based on the change, removal,

and addition of its components. Note that Add Unexported
Method is adding a method to an interface without an existing

unexported method, which will make a type that implements

the old interface fail to implement the new one.

C. Analysis of Breaking Changes Impact

To measure the impact of breaking changes on the client

programs, we parse the ASTs of packages in the client

programs based on static analysis and resolve identifiers to

obtain their types. By comparing the breaking change nodes

with the identifier nodes of client programs, we are able to get

the results of the impact analysis.

TABLE I
CATALOGUE OF BREAKING CHANGES IN THE GO ECOSYSTEM

Category Condition
Package Remove
Basic (Const) Type Change, Value Change, Remove
Basic Type Change, Remove
Array Element Change, Length Change, Remove
Slice Element Change, Remove
Map Key Change, Value Change, Remove

Struct
Field Number Change, Field Anonymous Change,
Field Type Change, Field Name Change,
Field Tag Change, Comparability Change, Remove

Interface
Method Number Change, Method ID Change,
Add Unexported Method, Add Interface Method,
Remove

Pointer Base Change, Remove
Channel Element Change, Direction Change

Function
Param Change, Return Change,
Variadic Change, Remove

Named Element Change, Remove
TypeParam Type Change, Remove
Data Type Change Data Type Change

Algorithm 1: Algorithm of Impact Analysis

Input: L: third-party libraries. C(i): clients for

third-party library i. B(i): nodes of breaking

changes in third-party library i.
Output: R: affected nodes in the clients

1 R← φ;

2 foreach third-party library l in L do
3 t(b)← types of B(l);
4 p(b)← package paths of B(l);
5 foreach client c in C(l) do
6 p(c)← import package paths of c;
7 if p(b) ∩ p(c) = φ then
8 continue;

9 end
10 foreach Identifier Node n in AST of c do
11 t(n)← Resolve(n);
12 if t(b) ∩ t(n) �= φ then
13 R← 〈c, n〉;
14 end
15 end
16 end
17 end
18 return R

Algorithm 1 gives the process of analyzing the impact on

client programs. First, for each TPL, we extract the type list

t(n) and package path list p(n) of the breaking change nodes

n (line 2-4). Second, we extract the package path list p(c) of

client c, and by comparing p(b) and p(c), we filter out client

programs that do not import packages of breaking change

nodes (lines 5-9). Otherwise, we resolve each identifier node

n to obtain its type t(n) by parsing the ASTs of the client

program, when the type of the identifier node t(n) is in the

type list t(n) of breaking change nodes, it means that the client

program will be affected by this breaking change (line 10-15).

1607

TABLE II
SCOPE OF DATASET

Dimension Validty Category Number

Repository
Total 102,420
Invalid 73,325
Valid 29,095

Version

Total 559,693
Invalid 112,513

Valid

Total 447,180
Major Upgrade 6,691
Minor Upgrade 45,634
Patch Upgrade 118,912
Development 200,859
Pre-release/Build 75,084

Dependency Graph Valid
TPL

Repository 5,604
Version 124,532

Client
Repository 23,929
Version 532,832

IV. STUDY RESULTS

In this section, we present the scope of our dataset and

answer each question through experiments and analysis. All

experiments were performed under Go version 1.19.6.

A. Dataset Scope

Table II shows the results of crawling and cleaning the

dataset in different dimensions. There are 102,420 repositories

with stars greater than five, we filter out invalid reposito-

ries according to the rule proposed in Section III-A and

obtain 29,095 valid repositories. For the remaining repositories

with 559,693 versions, we filter out all versions that do

not meet the SemVer constraint because we cannot analyze

their compatibility. Furthermore, we classify the valid versions

into five categories based on the type of library upgrade,

including major upgrade (6,691), minor upgrade (45,634),

patch upgrade (118,912), development (200,859), and pre-
release/build (75,084). development, with a major version

number of 0, is considered to be the initial development stage

and can introduce breaking changes like major upgrade and

pre-release/build. minor upgrade and patch upgrade cannot

introduce breaking changes to ensure compatibility with client

programs. We find that development is the most frequent of

the five library upgrades, meaning that there are more Go

repositories in the unstable development stage. Finally, we

identified the TPLs and corresponding client programs based

on the dependency graph, there are 5,604 TPLs with 124,532

versions and 23,929 client programs with 532,832 versions

respectively. Note that the versions of the TPLs must meet the

SemVer constraint, while the versions of the client programs

do not.

We also present the distribution of valid library upgrade

numbers ranging from 2018/09 to 2022/04, as shown in Figure

3. We chose the start date of 2018/09 because the Go package

management and module system was launched in Go version

1.11 in 2018/09 [15]. In 2023/04, the number of library

upgrade number drops sharply relative to the previous date

since we collect repositories with stars greater than five before

2023/04 and recent repositories have less time to get five stars.

TABLE III
TOTAL AND BREAKING UPGRADES IN THE DATASET

Level Total Breaking
Count % Count %

Repository 5,604 100 1,674 29.9

Version

Major 1,926 1.5 1,147 59.6
Minor 16,305 13.1 6,173 37.9
Patch 43,222 34.7 10,836 25.1
Development 63,079 50.7 17,904 28.4
Non-Major 59,527 47.8 17,009 28.6
Total 124,532 100 36,060 29.0

1
1
6 1

9
0

1
7
4 2
1

7
2
3
0 2
7
6

4
2

3
4
1
8 4
5

3
3
7
8

6
7

3
8
4
4

8
0

8
9
8
6

9
8
6

9
3

8
8

2
2

1
1

5
6

1
1
0
7

1
1

0
4

1
0
8
8

7
9
2 8

6
1

1
0

7
4

9
2
0

1
0
1
9

9
5

4
9
0
7

9
3

2
9
1
4 9

7
2

1
0
5
6

9
0
8 9
4

7
1
0
8
4

1
0

6
7

8
1

7
1
0
8
8

9
5

2
9
5
7

1
0

4
6

1
3
0
4

1
2
6
9

1
7

1
6

1
8
4
8

1
6

0
8

1
2

4
9

1
4

9
6

1
2
9
0

1
1

2
6

1
3
4
3

9
2

3 9
9
5

1
3
0
5 1
3

6
6

4
6

6

2
0

1
8

-0
9

2
0

1
8

-1
1

2
0

1
9

-0
1

2
0

1
9

-0
3

2
0

1
9

-0
5

2
0

1
9

-0
7

2
0

1
9

-0
9

2
0

1
9

-1
1

2
0

2
0

-0
1

2
0

2
0

-0
3

2
0

2
0

-0
5

2
0

2
0

-0
7

2
0

2
0

-0
9

2
0

2
0

-1
1

2
0

2
1

-0
1

2
0

2
1

-0
3

2
0

2
1

-0
5

2
0

2
1

-0
7

2
0

2
1

-0
9

2
0

2
1

-1
1

2
0

2
2

-0
1

2
0

2
2

-0
3

2
0

2
2

-0
5

2
0

2
2

-0
7

2
0

2
2

-0
9

2
0

2
2

-1
1

2
0

2
3

-0
1

2
0

2
3

-0
3

0

500

1000

1500

2000

N
u

m
b

er

Library Upgrade Time

Fig. 3. Statistics on the number of version upgrades over time

Overall, the number of library upgrade number is increasing

from 116 in 2018/09 to 1,366 in 2023/03. Therefore, with the

rapid increase in library upgrades, it is meaningful to detect

whether library upgrades meet SemVer compliance and do not

introduce breaking changes.

Summary: We identified 124K TPLs and 532K client pro-

grams from the collected dataset. Moreover, the number

of valid library upgrades is rapidly increasing over time

and it is significant to explore compliance with SemVer.

B. RQ1: How are semantic versioning compliance applied in
the Go ecosystem in terms of breaking changes

1) Method: With RQ1, we analyze the extent of SemVer

principles applied in the Go ecosystem from three perspec-

tives: breaking repositories, breaking library upgrades, and

the types of breaking changes. First, we identify how many

repositories have introduced breaking changes. Second, we

analyze how many breaking changes are usually introduced

in each library upgrade to know the distribution of breaking

changes. Finally, we study the frequency of each type of break-

ing change to find out the most common breaking changes in

our dataset.

To do so, we identify breaking changes between two valid

versions of TPLs and count the types of breaking changes.

The types of library upgrades are distinguished into major

1608

TABLE IV
THE DISTRIBUTION OF BREAKING CHANGES AND THEIR IMPACT

Index Category Condition Breaking Change Usage in
Client Program

Breaking
Library Upgrade

Number (B) % Number (U) % % (U/B) Number %
1 Package Remove 4,132 1.1 165 1.5 4.0 2,091 4.1
2

Basic (Const)
Type Change 1,332 0.4 22 0.2 1.7 53 0.1

3 Value Change 26,955 7.4 594 5.3 2.2 18,788 37.2
4 Remove 22,738 6.3 529 4.7 2.3 265 0.5
5

Basic
Type Change 1,608 0.4 1 0.0 0.0 15 0.0

6 Remove 13,223 3.6 3 0.0 0.0 20 0.0
7

Array
Element Change 12 0.0 0 0 0 0 0

8 Length Change 60 0.0 0 0 0 0 0
9 Remove 73 0.0 0 0 0 0 0
10

Slice
Element Change 928 0.3 3 0.0 0.3 10 0.0

11 Remove 3,709 1.0 0 0 0 0 0
12

Map
Key Change 63 0.0 0 0 0 0 0

13 Value Change 247 0.1 0 0 0 0 0
14 Remove 1,350 0.4 6 0.1 0.4 8 0.0
15

Struct

Field Number Change 195 0.1 3 0.0 1.5 3 0.0
16 Field Anonymous Change 0 0 0 0 0 0 0
17 Field Type Change 140 0.0 1 0.0 0.7 1 0.0
18 Field Name Change 6 0.0 0 0 0 0 0
19 Field Tag Change 48 0.0 0 0 0 0 0
20 Comparability Change 4,567 1.3 367 3.2 8.0 8,325 16.5
21 Remove 970 0.3 0 0 0 0 0
22

Interface

MethodNumber Change 4 0.0 0 0 0 0 0
23 Method ID Change 2 0.0 0 0 0 0 0
24 Add Unexported Method 101 0.0 0 0 0 0 0
25 Add Interface Method 30,563 8.4 2,660 23.5 8.7 22,899 45.4
26 Remove 102 0.0 0 0 0 0 0
27

Pointer
Base Change 969 0.3 2 0.0 0.2 170 0.3

28 Remove 4,968 1.4 1 0.0 0 6 0.0
29

Channel
Element Change 15 0.0 0 0 0.0 0 0

30 Direction Change 0 0 0 0 0 0 0
31 Remove 71 0.0 0 0 0 0 0
32

Function

Param Change 37,864 10.4 786 7.0 2.1 8,141 16.1
33 Return Change 17,351 4.8 418 3.7 2.4 1,862 3.7
34 Variadic Change 3,917 1.1 193 1.7 4.9 5,054 10.0
35 Remove 131,565 36.2 829 7.3 0.6 2,329 4.6
36

Named
Element Change 10,039 2.8 3,783 33.5 37.7 1,254 2.5

37 Remove 35,701 9.8 853 7.5 2.4 1,469 2.9
38

TypeParam
Type Change 21 0.0 0 0 0 0 0

39 Remove 0 0 0 0 0 0 0
40 Category Change Data Type Change 7,819 2.2 85 0.8 1.1 1,012 2.0
41 Total 363,428 100 11,304 100 3.1 50,485 100

upgrade, minor upgrade, patch upgrade, development, and

non-major upgrade, ignoring pre-release/build because it is

usually complementary to the normal library upgrade. non-
major upgrade consists of minor upgrade and patch upgrade
and cannot introduce breaking changes based on SemVer

compliance.

According to the layout of Go projects [20], not all packages

are imported by client programs. Therefore, We filter out the

following folders that are not related to breaking changes.

• /cmd: Main applications for this project.

• /internal: Private application and library code that do not

want others importing in their applications or libraries.

• /vendor: Application dependencies.

• /config: Configuration file templates.

• /init: System initialization and management files.

• /scripts: Scripts to perform build, install, etc. operations.

• /build: Packaging and continuous integration.

• /deployment: Deployment configuration files.

• /test: Additional external test applications and data.

2) Results: From the perspective of breaking repositories,

as shown in Table III, 1,674 repositories (29.9%) have at least

one breaking change, meaning that almost one-third of TPLs

violate the SemVer compliance and there is a high risk for

client programs to pick dependencies that do not adhere to

compatibility constraints.

From the perspective of breaking library upgrades, we found

that 50.7% of library upgrades are in the initial development

stage, followed by patch upgrades (34.7%), minor upgrades
(13.1%), and major upgrades (1.5%). This distribution in-

dicates that half of the library upgrades are not ready for

the public API. For breaking library upgrades, as expected,

most major upgrades (59.6%) introduce breaking changes,

followed by minor upgrades (37.9%), development (28.4%),

patch upgrades (25.1%). There are 28.6% of non-major up-
grades that do not meet the SemVer compliance, as many as

the breaking repositories, meaning that one-third of library

1609

2
0
1
8
-0

9
2
0
1
8
-1

0
2
0
1
8
-1

1
2
0
1
8
-1

2
2
0
1
9
-0

1
2
0
1
9
-0

2
2
0
1
9
-0

3
2
0
1
9
-0

4
2
0
1
9
-0

5
2
0
1
9
-0

6
2
0
1
9
-0

7
2
0
1
9
-0

8
2
0
1
9
-0

9
2
0
1
9
-1

0
2
0
1
9
-1

1
2
0
1
9
-1

2
2
0
2
0
-0

1
2
0
2
0
-0

2
2
0
2
0
-0

3
2
0
2
0
-0

4
2
0
2
0
-0

5
2
0
2
0
-0

6
2
0
2
0
-0

7
2
0
2
0
-0

8
2
0
2
0
-0

9
2
0
2
0
-1

0
2
0
2
0
-1

1
2
0
2
0
-1

2
2
0
2
1
-0

1
2
0
2
1
-0

2
2
0
2
1
-0

3
2
0
2
1
-0

4
2
0
2
1
-0

5
2
0
2
1
-0

6
2
0
2
1
-0

7
2
0
2
1
-0

8
2
0
2
1
-0

9
2
0
2
1
-1

0
2
0
2
1
-1

1
2
0
2
1
-1

2
2
0
2
2
-0

1
2
0
2
2
-0

2
2
0
2
2
-0

3
2
0
2
2
-0

4
2
0
2
2
-0

5
2
0
2
2
-0

6
2
0
2
2
-0

7
2
0
2
2
-0

8
2
0
2
2
-0

9
2
0
2
2
-1

0
2
0
2
2
-1

1
2
0
2
2
-1

2
2
0
2
3
-0

1
2
0
2
3
-0

2
2
0
2
3
-0

3

0

10

20

30

40

50

60

70
R

at
io

 o
f

b
re

ak
in

g
 u

p
g

ra
d

es
 (

%
)

 Major

 Minor

 Patch

 Development

 Non-major

Fig. 4. SemVer compliance in the Go ecosystem over time

upgrades introduce breaking changes. It is also important to

note that the rate of breaking library upgrades in development
differs significantly from major upgrade but only slightly from

non-major upgrade, pointing to greater attention to semantic

version compliance during the initial development stage.

From the perspective of the types of breaking changes, as

shown in Table IV, there are 40 breaking change conditions,

divided into 14 categories, including package, basic (const),
basic, array, slice, map, struct, interface, pointer, channel,
function, named, typeParam, and category change. We iden-

tified 363,428 breaking changes, and the five most common

breaking change types are remove in function type (36.2%),

param change in function type (10.4%), remove in named
type (9.8%), add interface method in interface type (8.4%),

and value change in basic (const) type (7.4%). Moreover, for

breaking change actions such as remove, change, and add, we

found that remove is the most common action (60.2%).

Summary: 86.3% of library upgrades adhere to SemVer

compliance, but 28.6% non-major upgrades introduce

breaking changes. It is important to note that even in

the initial development stage, developers of TPLs pay

more attention to avoid introducing breaking changes

relative to Major Upgrades. Moreover, remove is the

most common breaking change action at 60.2% while

remove in function is the most commons breaking change

condition at 36.2%.

C. RQ2: How much adherence to semantic versioning com-
pliance has increased over time?

1) Method: To answer RQ2, we study the tendency of

compliance with SemVer over time in terms of library up-

grades. In detail, library upgrades are still divided into five

categories, including major upgrade, minor upgrade, patch
upgrade, development, and non-major upgrade. Moreover, We

count the rate of breaking library upgrades per month to reflect

the tendency of SemVer compliance over time. We do not

study the tendency of compliance with SemVer over time in

terms of repositories because too few repositories may lead to

high data volatility while the number of library upgrades is

nearly 22 times the number of repositories.

2) Results: Figure 4 shows the tendency of the rate of

different breaking library upgrades in the latest five years,

from 2018/09 to 2023/03. We focus on the tendency of the rate

of breaking non-major upgrade because this upgrade cannot

introduce breaking changes. Also, We divide the tendency into

the following three parts.

• From 2018/09 to 2019/01. Due to the recent release of

the Go module system and the low number of library

upgrades, the rates of breaking library upgrades change

a lot during this period. However, the rate of breaking

non-major upgrades is decreasing from 36.3% to 21.5%.

• From 2019/01 to 2022/08. The rates of breaking library

upgrades tend to be stable during this period, where the

rate of breaking non-major upgrades ranges from 17.5%

to 26.0%. Regarding major upgrade, the rate of it changes

a lot because of its small number.

• From 2022/08 to 2023/03. The rates of all breaking

library upgrades are decreasing, in which the rate of

breaking non-major upgrade is decreasing sharply from

19.5% to 7.8%.

1610

Summary: The rate of breaking major upgrade fluctuates

over time because of its small number, while the rates of

other breaking library upgrades are decreasing. Further-

more, more library upgrades meet SemVer compliance

from 63.7% in 2018/09 to 92.2% in 2023/03.

D. RQ3: What about the impact of breaking changes on client
programs?

1) Method: In RQ3, we examine to what extent breaking

changes affect client programs in terms of the types of

breaking changes and how many client programs are affected

by breaking changes. In detail, for a breaking library upgrade

from version v1 to v2, we extract the client programs that

depend on version v1. If the developers of the client programs

update the dependent version to v2, breaking changes will

affect the client programs. Moreover, we ignore major up-
grades and developments because these library upgrades can

introduce breaking changes while non-major upgrades need to

ensure that there are no incompatible changes. We analyze the

impact of breaking changes on client programs by calculating

the usage related to breaking changes.

2) Results: According to Table III, there are 17,009 non-
major upgrades and we collected 151,589 downstream client

programs based on the dependency graph. We present the

data of breaking changes used in client programs and library

upgrades affected by different types of breaking changes, as

shown in Table IV.

There are 11,034 breaking changes used in client programs,

in which the five most common breaking change types are

element change in named type (33.5%), add interface method
in interface type (23.5%), remove in named type (7.5%),

remove in function type (7.3%), and param change in function
type (7.0%). Compared to the five most common breaking

changes, element change in named type is added while value
change in basic (const) type is missing. Named types are

data types customized by the developers of TPLs to achieve

different functionality, therefore, breaking changes on them are

more likely to be introduced by client programs. We ignore

the missing of value change in basic (const) type because it

still occurs frequently (5.3%).

we also found that 96.9% of breaking changes do not

affect client programs. Among the high frequency of breaking

changes, only a very low rate affects client programs, for

example, only 0.6% of remove in function type have an

impact on client programs. For element change in named type,

although its breaking changes occur at a rate of 2.8%, one-

third of them will have a significant impact.

We also explain the impact of breaking changes from the

perspective of the client programs. There are 50,485 client

programs affected by breaking changes, which means that

one-third of the client programs should make more efforts

due to violations of SemVer compliance. Moreover, the two

most common breaking changes affecting client programs are

add interface method in interface type (45.4%) and value
change in basic (const) type (37.2%). add interface method
in interface type requires the developers of client programs to

write additional code to adapt to the new behaviour. And value
change in basic (const) type indicates that the developers of

client programs need to keep up with the times using newer

parameters and configurations for program operation.

Summary: We observe that only 3.1% of breaking

changes are used by client programs, but they affect

33.3% of downstream client programs due to numerous

dependencies. This tells us that just a small number of

breaking changes can have a serious impact on client

programs in the Go ecosystem.

V. DISCUSSION

A. Implications for TPLs Developers

Changes often occur in software development to add new

features, fix bugs, and refactor code [21]. When breaking

changes exist, developers cannot perform minor upgrades and

patch upgrades according to SemVer [8]. This is simple to

do for TPLs maintained by s single or a small number of

developers, while in a collaborative TPL, there is no guarantee

that everyone will strictly adhere to SemVer compliance.

Therefore, it is important for developers to use GoSVI to detect

breaking changes and help determine the version number.

Not all exported objects should be referenced by client

programs. Developers can limit the scope of packages by

defining internal packages, which cannot be used by client

programs. Also, if the interfaces do not want to be used by

client programs, an unexported method should be added to the

interface so that client programs cannot implement them.

Moreover, it makes sense to use GoSVI to detect which ex-

ported objects are more popular with client programs, enabling

developers to refactor their code more sensibly while affecting

client programs as little as possible.

B. Implications for Client Programs Developers

As shown in RQ1 and RQ3, although 86.3% of library

upgrades adhere to SemVer compliance, 33.3% of client

programs are affected by breaking changes. Therefore, it is

essential for developers of client programs to decide which

version to upgrade. Compared to reading the documentation

and source code, GoSVI can automatically identify breaking

changes of library upgrades and help meet requirements with-

out causing too many interruptions.

Furthermore, breaking changes exist in most ecosystems

[9], such as Cargo, Npm, Packagist, and Rubygems, and Go

is no exception. If developers do not want to be affected

by breaking changes, the most conservative approach is to

not update dependencies. Delaying updates to dependencies

and checking feedback to decide whether to update is also a

recommended approach.

VI. THREATS TO VALIDITY

A. Internal Validity

We collect the dataset from 2018/09 to 2023/04, while

SemVer was propused in 2013/06, meaning that the analysis

results are missing between 2013/06 to 2018/09. We ignore

1611

those data to ensure that the dataset is confident because it is

not possible to extract dependency graphs and identify TPLs

based on the module system.

We filter packages designed not to be imported based on

the layout of Go project [20], but this rule is not followed by

all developers. Therefore, this threat may lead to a low rate of

compliance with the Semver.

Although the Go apidiff tool is officially implemented and

widely used, we were unable to verify its accuracy in detecting

breaking changes because of the absence of any standard

benchmark. In order to understand as much as possible about

the effectiveness of GoSVI in detecting breaking changes,

we verified the precision on 100 randomly selected cases of

breaking changes. The result 2 shows that GoSVI can identify

the majority of breaking changes with 91% precision.

The process of resolving identifier nodes to extract the types

may have errors. However, to relieve this threat, we implement

this functionality based on a well-known TPL: packages [22].

B. External Validity

We collect the Go repositories hosted on GitHub, which

attracts over 100 million software developers. There is an error

in using the analysis results of repositories on GitHub as the

analysis results of the whole ecosystem.

VII. RELATED WORK

A. Study of Semantic Versioning Compliance

SemVer is commonly accepted by package management

systems to inform developers whether releases of software

packages introduce possible breaking changes. Hence, many

empirical words [5], [23], [24] have studied compliance of

SemVer in different package management systems, such as

Java with Maven, Node.js with Npm, Rust with Cargo, PHP

with Packagist and Ruby with Rubygems. Cogo et al. [23]

scoped the downgrade from client view with more than 600K

reusable packages of JavaScript from Npm and the result

showed the clients decide to downgrade mostly because the

provider version introduces a failure and the downgrade is

correlative with the upgrade caused by the provider. Ochoa

et al. [5] scoped SemVer on Java with Maven of almost

120K library upgrades and found that 20.1% of non-major

upgrades contained Breaking Changes and only 7.9% of client

programs are affected by breaking changes. Raemaekers et

al. [24], [25] scoped SemVer on Java with Maven of more

than 100K libraries and found that nearly one-third of all

releases introduce at least one breaking change, the tendency

of complying with SemVer in non-major releases do not

become better over time and developers of client programs

do not follow deprecation guidelines suggested by SemVer

as expected. In this paper, we focus on the scope of the Go

package management system and found that 86.3% of library

upgrades comply with SemVer while 33.3% of client programs

may be affected by breaking changes.

2The data is accessible at https://drive.google.com/drive/folders/1Cf9KITH
z5p04xZJCkQQo5BZEP6h4Bov8

B. Detection of Breaking changes

There are many tools that are designed to detect API break-

ing changes [4], [26]–[29]. Brito et al. [4] proposed APIDiff to

detect syntactic changes on Java with type, method and field

and recognized breaking changes and non-breaking changes

based on different conditions. Mezzetti et al. [26] proposed

techniques named type regression testing to automatically

detect breaking updates on the public interface on Node.js

based on dynamic analysis. Mujahid et al. [27] proposed a

technique to detect breakage-inducing versions of third-party

dependencies. Moreover, Jezek et al. [30] have developed a

compact benchmark data set of less than 200KB to evaluate

the accuracy of the tools, such as japicmp [28], JAPICC

[31], and SigTest [32]. Zhang et cl. [29] detected semantic

breaking change based on static analysis and found that there

were 24 times more semantic breaking changes than those

with signature-based issues. In this paper, we focus on the

signature-based breaking changes and propose GoSVI tool to

detect breaking changes between versions in the Go module

system.

C. Analysis of breaking change impact

There are many works have been proposed to analyze

the impact of breaking change on client programs [5], [21],

[24], [33], [34]. Xavier et al. [21] and Bavota et al. [34]

analyzed whether the types of breaking changes are imported

by client programs (using keyword import). This approach

overestimates the impact of breaking changes because there

are cases where they are imported but not used. Robbes et al.

[33] manually calculated the ripple effects of breaking changes

across an entire ecosystem. This approach is not appropriate

for large-scale studies. Raemaekers et al. [24] proposed a

new technique to inject each breaking change individually and

analyze its impact by counting the number of compilation

errors. It is difficult to ensure that the injection process

does not introduce other breaking changes to mislead the

experimental results. Ochoa et al. [5] used Rascal M3 model

[35], which stores the relationship between Java elements, to

link breaking changes to the usages in client programs. This

approach is limited by the M3 model and cannot analyze

breaking changes related to overridden methods. Prior works

have focused on analyzing the impact of breaking changes in

the Java language except for the Go language. In this paper, we

resolved all identifiers in the client programs to extract their

types and calculated the affected elements of client programs

by comparing the types with breaking changes. We implement

this functionality based on the Go underlying toolkit packages
[22] to make the results more accurate.

D. API Evolution

Many research works [33], [36]–[41] have studied the

API evolution from different perspectives. Lamothe et al.

[36] found that understanding, mitigating, and leveraging the

impact of APIs and API evolution on software development are

necessary to design and use APIs. Koçi et al. [37] summarized

that API evolution can be divided into changed API elements,

1612

changed performing actions from the producer of view, and

changed API elements from the consumer of view. The reason

to perform changes includes improving understandability and

readability, improving error tolerance from various consumers,

improving security by fixing bugs or meeting consumers’

common requirements. Robbes et al. [33] point out that the

median time of developers reacting to API changes is two

weeks, and the time of adaption takes nearly a month or

higher. Hora et al. [40] showed that client reaction time to API

changes is longer than deprecation. Lima et al. [41] analyzed

that popular APIs provide a large proportion of API elements

and contain more code comments, which indicates the stability

of popular APIs is better. In this paper, we aim to investigate

API compatibility in terms of API breaking changes according

to SemVer [8].

VIII. CONCLUSION

In this paper, we conduct the first large-scale empirical

study in the Go ecosystem to investigate the compliance of

the SemVer in terms of breaking changes. We aim to analyze

the frequency of breaking changes, the tendency of breaking

changes over time, and the impact of breaking changes on

client programs. To do so, we implement and use GoSVI
to detect breaking changes between two versions in the Go

modules and analyze the impact of breaking changes on clients

by resolving identifier nodes and comparing the types with

breaking changes. Also, we collect a large-scale dataset with

a dependency graph, including 124K TPLs and 532K client

programs. We found the following results.

• The number of library upgrades is rapidly increasing over

time, and it is significant to explore whether each library

upgrade adheres to Semver compliance.

• Library upgrades often introduce breaking changes and

28.6% of non-major upgrades violate SemVer compli-

ance. Moreover, remove in function type is the most

common breaking change condition at 36.2%.

• More library upgrades do not introduce breaking changes

over time. The tendency to comply with SemVer has

significantly increased from 63.7% in 2018/09 to 92.2%

in 2023/03.

• There are only 3.1% of breaking changes used in client

programs, but one-third of client programs may be af-

fected, meaning that few breaking changes will have a

serious impact on client programs.

According to our results, we give some suggestions to help

developers of TPLs and client programs to make decisions

about SemVer. Also, we recommend using GoSVI to assist

with automated breaking changes analysis and downstream

client programs data insight.

As future work, we plan to detect semantic breaking changes

in the Go ecosystem to understand how breaking changes

potentially disrupt client programs. Also, we will draw com-

parisons with other package ecosystems such as Npm and

Maven to provide more valuable insights into the relative

significance of breaking changes across different platforms.

ACKNOWLEDGMENT

We appreciate the insightful insights provided by anony-

mous reviewers to improve the quality of the paper. This work

is supported by the National Science Foundation of China

under grant No. 62072200 and No. 6217071437.

REFERENCES

[1] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability identi-
fication in android applications,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 1695–1707.

[2] A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E. Constantinou,
and G. Robles, “A formal framework for measuring technical lag
in component repositories—and its application to npm,” Journal of
Software: Evolution and Process (J Softw), vol. 31, no. 8, p. e2157,
2019.

[3] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu, “Research
on third-party libraries in android apps: A taxonomy and systematic
literature review,” IEEE Transactions on Software Engineering (TSE),
2021.

[4] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Apidiff: Detecting api
breaking changes,” in Proceedings of 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2018, pp. 507–511.

[5] L. Ochoa, T. Degueule, J.-R. Falleri, and J. Vinju, “Breaking bad?
semantic versioning and impact of breaking changes in maven central,”
Empirical Software Engineering (ESE), vol. 27, no. 3, 2022.

[6] S. Mostafa, R. Rodriguez, and X. Wang, “Experience paper: a study
on behavioral backward incompatibilities of java software libraries,” in
Proceedings of the 26th ACM SIGSOFT international symposium on
software testing and analysis (ISSTA), 2017, pp. 215–225.

[7] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in android apps,”
in Proceedings of the 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 408–419.

[8] “Semantic versioning,” 2021. [Online]. Available: https://semver.org/
[9] A. Decan and T. Mens, “What do package dependencies tell us about

semantic versioning?” IEEE Transactions on Software Engineering
(TSE), vol. 47, no. 6, pp. 1226–1240, 2019.

[10] F. Beuke, “Github language stats,” 2023. [Online]. Available:
https://madnight.github.io/githut/#/stars/2023/1

[11] N. Meyer, “Why was backward compatibility broken without a
major version upgrade,” 2019. [Online]. Available: https://github.com/
gin-gonic/gin/issues/2174

[12] G. K. Raula, M. G. Daniel, O. Ali, and I. I. Takashi, “Do developers
update their library dependencies?” Empirical Software Engineering
(ESE), vol. 23, pp. 384–417, 2017.

[13] “Apidiff packages for checking go package api compatibility,” 2022.
[Online]. Available: https://pkg.go.dev/golang.org/x/exp/apidiff

[14] “Neo4j graph data platform - graph database management tool,” 2023.
[Online]. Available: https://neo4j.com/

[15] “Go 1.11 release notes,” 2018. [Online]. Available: https://go.dev/doc/
go1.11

[16] “The go.mod file reference,” 2018. [Online]. Available: https:
//go.dev/doc/modules/gomod-ref

[17] “How to managing dependencies,” 2018. [Online]. Available: https:
//go.dev/doc/modules/managing-dependencies

[18] “Go package search engine,” 2023. [Online]. Available: https:
//pkg.go.dev/

[19] “Github docs - search repositories,” 2022. [Online]. Available:
https://docs.github.com/en/rest/search#about-the-search-api

[20] K. Quest, “Standard go project layout,” 2023. [Online]. Available:
https://github.com/golang-standards/project-layout

[21] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of api breaking changes: A large-scale study,” in Proceedings
of 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017, pp. 138–147.

[22] “packages package,” 2023. [Online]. Available: https://pkg.go.dev/
golang.org/x/tools/go/packages

[23] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “An empirical study of
dependency downgrades in the npm ecosystem,” IEEE Transactions on
Software Engineering (TSE), vol. 47, no. 11, pp. 2457–2470, 2019.

1613

[24] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
and impact of breaking changes in the maven repository,” Empirical
Software Engineering (ESE), vol. 129, pp. 140–158, 2017.

[25] S. Raemaekers, A. Van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the maven repository,” in Proceed-
ings of 2014 IEEE 14th International Working Conference on Source
Code Analysis and Manipulation (ICSME), 2014, pp. 215–224.

[26] G. Mezzetti, A. Møller, and M. T. Torp, “Type regression testing to
detect breaking changes in node.js libraries,” in Proceedings of the 32nd
european conference on object-oriented programming (ECOOP), 2018,
pp. 7:1–7:24.

[27] S. Mujahid, R. Abdalkareem, E. Shihab, and S. McIntosh, “Using
others’ tests to identify breaking updates,” in Proceedings of the 17th
International Conference on Mining Software Repositories (MSR), 2020,
pp. 466–476.

[28] M. Mois, “japicmp,” 2023. [Online]. Available: https://github.com/
siom79/japicmp

[29] Z. Lyuye, L. Chengwei, X. Zhengzi, C. Sen, F. Lingling, C. Bihuan,
and L. Yang, “Has my release disobeyed semantic versioning? static
detection based on semantic differencing,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2022, pp. 1–12.

[30] K. Jezek and J. Dietrich, “Api evolution and compatibility: A data
corpus and tool evaluation,” The Journal of Object Technology (J. Object
Technol.), vol. 16, no. 4, pp. 2–1, 2017.

[31] A. Ponomarenko, “Java api compliance checker,” 2023. [Online].
Available: https://github.com/lvc/japi-compliance-checker

[32] K. Looney, “Sigtest,” 2023. [Online]. Available: https://wiki.openjdk.
org/display/CodeTools/sigtest

[33] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to api deprecation? the case of a smalltalk ecosystem,” in Proceedings
of the 20th International Symposium on the Foundations of Software

Engineering (FSE), 2012, pp. 1–11.
[34] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “The

evolution of project inter-dependencies in a software ecosystem: The
case of apache,” in Proceedings of 2013 IEEE International Conference
on Software Maintenance (ICSM), 2013, pp. 280–289.

[35] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer,
and J. J. Vinju, “M3: A general model for code analytics in rascal,” in
2015 IEEE 1st International Workshop on Software Analytics (SWAN),
2015, pp. 25–28.

[36] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A systematic review of
api evolution literature,” ACM Computing Surveys (CS), vol. 54, no. 8,
pp. 1–36, 2021.

[37] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló, “Classification of
changes in api evolution,” in Proceedings of 2019 IEEE 23rd Inter-
national Enterprise Distributed Object Computing Conference (EDOC),
2019, pp. 243–249.

[38] T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing pains:
Stories from client developers and their code,” in Proceedings of 2014
Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), 2014, pp. 84–
93.

[39] S. Sohan, C. Anslow, and F. Maurer, “A case study of web api evolution,”
in Proceedings of 2015 IEEE World Congress on Services, 2015, pp.
245–252.

[40] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente,
“Apievolutionminer: Keeping api evolution under control,” in Proceed-
ings of 2014 Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
2014, pp. 420–424.

[41] C. Lima and A. Hora, “What are the characteristics of popular apis? a
large-scale study on java, android, and 165 libraries,” Software Quality
Journal (Softw. Qual. J.), vol. 28, no. 2, pp. 425–458, 2020.

1614

